Optimal Sample Size and Composition for Crop Classification with Sen2-Agri’s Random Forest Classifier
نویسندگان
چکیده
Sen2-Agri is a software system that was developed to facilitate the use of multi-temporal satellite data for crop classification with random forest (RF) classifier in an operational setting. It automatically ingests and processes Sentinel-2 LandSat 8 images. Our goal provide practitioners recommendations best sample size composition. The study area located Yaqui Valley Mexico. Using polygons more than 6000 labeled fields, we prepared sets training, which nine crops had equal or proportional representation, called Equal Ratio, respectively. Increasing training set improved overall accuracy (OA). Gains became marginal once total number fields approximated 500 40 45 per type. achieved slightly higher OAs Ratio given fields. However, recall F-scores individual tended be Equal. high wheat scenarios, ranging from 275 2128, produced accurate maximal 80 This resulted turn limited errors commission non-wheat crops. Thus, representation preferable yields better accuracies, even minority
منابع مشابه
Optimal Non-Parametric Prediction Intervals for Order Statistics with Random Sample Size
In many experiments, such as biology and quality control problems, sample size cannot always be considered as a constant value. Therefore, the problem of predicting future data when the sample size is an integer-valued random variable can be an important issue. This paper describes the prediction problem of future order statistics based on upper and lower records. Two different cases for the ...
متن کاملRandom Forest Classifier Based ECG Arrhythmia Classification
Heart Rate Variability (HRV) analysis is a non-invasive tool for assessing the autonomic nervous system and for arrhythmia detection and classification. This paper presents a Random Forest classifier based diagnostic system for detecting cardiac arrhythmias using ECG data. The authors use features extracted from ECG signals using HRV analysis and DWT for classification. The experimental results...
متن کاملRandom Forest Classifier Based ECG Arrhythmia Classification
Heart Rate Variability (HRV) analysis is a non-invasive tool for assessing the autonomic nervous system and for arrhythmia detection and classification. This paper presents a Random Forest classifier based diagnostic system for detecting cardiac arrhythmias using ECG data. The authors use features extracted from ECG signals using HRV analysis and DWT for classification. The experimental results...
متن کاملRandom Forest Classifier Based ECG Arrhythmia Classification
Heart Rate Variability (HRV) analysis is a non-invasive tool for assessing the autonomic nervous system and for arrhythmia detection and classification. This paper presents a Random Forest classifier based diagnostic system for detecting cardiac arrhythmias using ECG data. The authors use features extracted from ECG signals using HRV analysis and DWT for classification. The experimental results...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15030608